144 research outputs found

    Integrating BDI and Reinforcement Learning: the Case Study of Autonomous Driving

    Get PDF
    Recent breakthroughs in machine learning are paving the way to the vision of software 2.0 era, which foresees the replacement of traditional software development with such techniques for many applications. In the context of agent-oriented programming, we believe that mixing together cognitive architectures like the BDI one and learning techniques could trigger new interesting scenarios. In that view, our previous work presents Jason-RL, a framework that integrates BDI agents and Reinforcement Learning (RL) more deeply than what has been already proposed so far in the literature. The framework allows the development of BDI agents having both explicitly programmed plans and plans learned by the agent using RL. The two kinds of plans are seamlessly integrated and can be used without differences. Here, we take autonomous driving as a case study to verify the advantages of the proposed approach and framework. The BDI agent has hard-coded plans that define high-level directions while fine-grained navigation is learned by trial and error. This approach – compared to plain RL – is encouraging as RL struggles in temporally extended planning. We defined and trained an agent able to drive in a track with an intersection, at which it has to choose the correct path to reach the assigned target. A first step towards porting the system in the real-world has been done by building a 1/10 scale racecar prototype which learned how to drive in a simple track

    The Impact of Surplus Sharing on the Stability of International Climate Agreements

    Full text link

    Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish

    Get PDF
    Cellular metabolism provides various sources of hydrogen peroxide (H2O2) in different organelles and compartments. The suitability of H2O2 as an intracellular signaling molecule therefore also depends on its ability to pass cellular membranes. The propensity of the membranous boundary of the endoplasmic reticulum (ER) to let pass H2O2 has been discussed controversially. In this essay, we challenge the recent proposal that the ER membrane constitutes a simple barrier for H2O2 diffusion and support earlier data showing that (i) ample H2O2 permeability of the ER membrane is a prerequisite for signal transduction, (ii) aquaporin channels are crucially involved in the facilitation of H2O2 permeation, and (iii) a proper experimental framework not prone to artifacts is necessary to further unravel the role of H2O2 permeation in signal transduction and organelle biology. © 2016 Elsevier Inc

    Detecting Starting Point Bias in Dichotomous-Choice Contingent Valuation Surveys

    Full text link

    The Acute Optic Neuritis Network (ACON): Study protocol of a non-interventional prospective multicenter study on diagnosis and treatment of acute optic neuritis

    Get PDF
    Optic neuritis (ON) often occurs at the presentation of multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD). The recommended treatment of high-dose corticosteroids for ON is based on a North American study population, which did not address treatment timing or antibody serostatus. The Acute Optic Neuritis Network (ACON) presents a global, prospective, observational study protocol primarily designed to investigate the effect of time to high-dose corticosteroid treatment on 6-month visual outcomes in ON. Patients presenting within 30 days of the inaugural ON will be enrolled. For the primary analysis, patients will subsequently be assigned into the MS-ON group, the aquapotin-4-IgG positive ON (AQP4-IgG+ON) group or the MOG-IgG positive ON (MOG-IgG+ON) group and then further sub-stratified according to the number of days from the onset of visual loss to high-dose corticosteroids (days-to-Rx). The primary outcome measure will be high-contrast best-corrected visual acuity (HC-BCVA) at 6 months. In addition, multimodal data will be collected in subjects with any ON (CIS-ON, MS-ON, AQP4-IgG+ON or MOG-IgG+ON, and seronegative non-MS-ON), excluding infectious and granulomatous ON. Secondary outcomes include low-contrast best-corrected visual acuity (LC-BCVA), optical coherence tomography (OCT), magnetic resonance imaging (MRI) measurements, serum and cerebrospinal fluid (CSF) biomarkers (AQP4-IgG and MOG-IgG levels, neurofilament, and glial fibrillary protein), and patient reported outcome measures (headache, visual function in daily routine, depression, and quality of life questionnaires) at presentation at 6-month and 12-month follow-up visits. Data will be collected from 28 academic hospitals from Africa, Asia, the Middle East, Europe, North America, South America, and Australia. Planned recruitment consists of 100 MS-ON, 50 AQP4-IgG+ON, and 50 MOG-IgG+ON. This prospective, multimodal data collection will assess the potential value of early high-dose corticosteroid treatment, investigate the interrelations between functional impairments and structural changes, and evaluate the diagnostic yield of laboratory biomarkers. This analysis has the ability to substantially improve treatment strategies and the accuracy of diagnostic stratification in acute demyelinating ON

    The Acute Optic Neuritis Network (ACON): Study protocol of a non-interventional prospective multicenter study on diagnosis and treatment of acute optic neuritis

    Get PDF
    Optic neuritis (ON) often occurs at the presentation of multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD). The recommended treatment of high-dose corticosteroids for ON is based on a North American study population, which did not address treatment timing or antibody serostatus. The Acute Optic Neuritis Network (ACON) presents a global, prospective, observational study protocol primarily designed to investigate the effect of time to high-dose corticosteroid treatment on 6-month visual outcomes in ON. Patients presenting within 30 days of the inaugural ON will be enrolled. For the primary analysis, patients will subsequently be assigned into the MS-ON group, the aquapotin-4-IgG positive ON (AQP4-IgG+ON) group or the MOG-IgG positive ON (MOG-IgG+ON) group and then further sub-stratified according to the number of days from the onset of visual loss to high-dose corticosteroids (days-to-Rx). The primary outcome measure will be high-contrast best-corrected visual acuity (HC-BCVA) at 6 months. In addition, multimodal data will be collected in subjects with any ON (CIS-ON, MS-ON, AQP4-IgG+ON or MOG-IgG+ON, and seronegative non-MS-ON), excluding infectious and granulomatous ON. Secondary outcomes include low-contrast best-corrected visual acuity (LC-BCVA), optical coherence tomography (OCT), magnetic resonance imaging (MRI) measurements, serum and cerebrospinal fluid (CSF) biomarkers (AQP4-IgG and MOG-IgG levels, neurofilament, and glial fibrillary protein), and patient reported outcome measures (headache, visual function in daily routine, depression, and quality of life questionnaires) at presentation at 6-month and 12-month follow-up visits. Data will be collected from 28 academic hospitals from Africa, Asia, the Middle East, Europe, North America, South America, and Australia. Planned recruitment consists of 100 MS-ON, 50 AQP4-IgG+ON, and 50 MOG-IgG+ON. This prospective, multimodal data collection will assess the potential value of early high-dose corticosteroid treatment, investigate the interrelations between functional impairments and structural changes, and evaluate the diagnostic yield of laboratory biomarkers. This analysis has the ability to substantially improve treatment strategies and the accuracy of diagnostic stratification in acute demyelinating ON. Trial registration: ClinicalTrials.gov, identifier: NCT05605951

    Simulating the Impact on the Local Economy of Alternative Management Scenarios for Natural Areas

    Full text link

    What are the Effects of Contamination Risks on Commercial and Industrial Properties? Evidence from Baltimore, Maryland

    Full text link

    Urban Environmental Health and Sensitive Populations: How Much are the Italians Willing to Pay to Reduce Their Risks?

    Full text link
    corecore